球书小说网

手机浏览器扫描二维码访问

第302章 怎么都不来啊(第1页)

1、将特征重要程度排序的过程与模型构建过程同时进行的特征选择方法称作嵌入式特征选择方法(√)2、线性回归模型的目标函数为残差平方和最大化(残差平方和最小化)3、特征向量中心度度量节点在网络中的影响力。网络中每个节点被赋予一个影响力分数,一个节点与更多的高分节点相连,其分数也趋向于更高。(√)4、强化学习使用已标记的数据,根据延迟奖励学习策略。(未标记的数据,通过与环境的交互来收集数据进行学习)5、过拟合是机器学习中一个重要概念,是指模型过于复杂,导致对测试数据预测很好,但对训练数据预测很差。(对训练数据预测很好,对测试数据预测很差)三、分析题(本题满分30分,共含5道小题,每小题6分)1、现有样本如下:0,2,3,4,5,6,7,8,9,10,41,42,43,44,45,46,47,48,49,50。使用等距离散化来处理该样本,将样本分为5个区间段。有几个区间内样本容量不为0?你的答案:2你的计算过程:首先,计算样本的最小值和最大值:最小值:0最大值:50然后,确定分为5个区间时的间距:(最大值-最小值)区间数=(50-0)5=10接下来,以间距为10进行等距离散化:区间1:0-9(共10个样本)区间2:10-19(无样本)区间3:20-29(无样本)区间4:30-39(无样本)区间5:40-50(共11个样本)根据以上结果,有2个区间段(区间2和区间3)内的样本容量不为0。请注意,这种等距离散化方式可能导致某些区间没有样本,而其他区间样本较多。2、随机森林采用的是什么集成方法?(A.Bagging,B.Boosting,C.Stacking)。这种集成方法适用于什么情况?你的选择:bagging你的解释:Bagging(自举汇聚法)适用于以下情况:训练数据较少,需要尽可能充分利用现有的有限样本。数据集存在较强的噪声或离群点,需要通过多个模型的平均来减小噪声影响。需要降低模型的方差,提高模型的稳定性和鲁棒性。模型复杂度较高,容易过拟合,需要引入随机性增加泛化能力。Bagging通过对原始训练集进行有放回的抽样,构建多个子模型。每个子模型相互独立地训练,并通过取平均值(回归问题)或投票(分类问题)的方式进行预测。随机森林就是一种基于Bagging思想的集成学习算法,它使用决策树作为基分类器,并通过对特征的随机选择进一步增加模型的多样性。由于Bagging的平行结构,随机森林可以有效处理大规模数据,具有较好的预测性能和计算效率。3、为了考察一种新的教学方法对学生英语成绩的影响,某学校进行了调查,共得到400个样本数据。数据表中GRADE为标签,PSI、GPA、TUC为特征。GRADE为分类数据,取1表示学习成绩提高,0表示学习成绩没有提高;PSI为分类数据,取1表示接受了新的教学方法指导,0表示没有接受新的教学方法指导;GPA表示学生平均积分点,为数值型数据;TUC表示以往的学生成绩,为数值型数据。假如,想了解GPA、TUC和PSI对学生成绩是否有影响,以及预测学生学习成绩是否会提高,你会选择下述用哪个。

模型?为什么?(A.线性回归B.逻辑回归C.聚类D.关联规则挖掘)你的选择:逻辑回归你的解释:逻辑回归是一种广泛应用于分类问题的机器学习算法。在这个情况下,我们的目标是预测学习成绩是否提高,这是一个二分类问题,即学习成绩提高或不提高。逻辑回归可以用来建立一个概率模型,根据给定的特征值(GPA、TUC和PSI),计算出学生成绩提高的概率。逻辑回归模型的输出是一个概率值,表示学生成绩提高的可能性。这使得我们能够根据学生的特征值进行预测,并判断他们学习成绩是否会提高。此外,逻辑回归还可以提供每个特征的权重系数,帮助我们理解各个特征对学生成绩的影响程度。线性回归(A.线性回归)也可用于这个问题,但它更适用于连续数值型的目标变量的预测,而不是二分类问题。聚类(C.聚类)是无监督学习方法,不适用于这个情况。关联规则挖掘(D.关联规则挖掘)通常用于发现数据中的频繁项集和关联关系,不太适合用于预测学生成绩的问题。因此,在给出的选项中,选择使用逻辑回归模型(B.逻辑回归)是合适的,它可以用于预测学生学习成绩是否会提高,并了解GPA、TUC和PSI对学生成绩的影响程度。4、K-means算法在给定数据集上运行第一次后的结果为,数据集分为三个簇:cluster1:(1,3)、(2,4);cluster2:(4,0)、(2,0);cluster3:(0,3)、(0,5)。样本(0,3)和cluster2的质心之间的曼哈顿距离为:你的答案:5你的计算过程:Cluster2的质心:(4+2)2=3;0样本的坐标是(0,3),Cluster2的质心是(3,0)。将给定的点代入公式,我们有:d=|3-0|+|0-3|=|3|+|-3|=3+3=6。

这章没有结束,请点击下一页继续阅读!

。。

1Bagging(包装法):优势:Bagging通过随机有放回地对训练数据进行采样,每个基分类器独立训练,然后通过投票或平均等方式进行集成,能够有效降低过拟合风险,提高模型的泛化能力。它尤其适合在高方差的模型上使用,如决策树等。局限性:对于高偏差的模型来说,Bagging可能无法显着改善模型性能。此外,由于基分类器的独立性,Bagging不容易处理存在较强相关性的数据,比如时间序列数据。使用场景:Bagging通常用于分类和回归问题,在数据集较大且噪声相对较小的情况下表现良好。2Boosting(提升法):优势:Boosting通过迭代地训练一系列基分类器,并根据前一个分类器的性能对样本权重进行调整,使得基分类器逐渐关注于难以分类的样本。它能够有效提高模型的精度和泛化能力,尤其适合解决高偏差的问题。局限性:Boosting对噪声和异常值比较敏感,容易导致过拟合。此外,由于基分类器之间存在依赖关系,Boosting的训练过程相对较慢。使用场景:Boosting通常用于分类问题,在需要处理高偏差或低准确度的场景下表现出色。3Stacking(堆叠法):优势:Stacking通过在多个基分类器上构建一个元分类器来进行集成,可以充分利用各个基分类器的预测结果,进一步提升性能。通过允许使用更复杂的元分类器,Stacking具有更强大的表达能力。局限性:Stacking的主要挑战在于选择合适的元特征以及使用交叉验证避免数据泄露。此外,Stacking通常需要更多的计算资源和时间来进行模型训练和预测。使用场景:Stacking适用于各类机器学习问题,并且在数据集相对较大、前期已经进行了一定特征工程的情况下效果较好。

喜欢离语请大家收藏:()离语

棒打鸳鸯的恶人主母,重生摆烂了  不当舔狗后,校花哭问为什么!  凡人神算  玄学大佬种田算命捉鬼  我有个死要钱的系统  综影视:祖龙杀疯了,我负责躺赢  江与溪同归麒麟美人骨  归零:云海梦境,山海有灵  苟在修仙世界当反派  带着原神祈愿系统穿越到诡异世界  末世:战姬指挥官  这个影帝只想考证  我在无限流游戏里为所欲为  神奇宝贝:羁绊的旅途  红楼之剑天外来  建立超级家族:从52年隐居开始  四合院之罪恶克星  快穿:病美人仙君又拿白月光剧本  除了我,全家都穿越了  异界:魔王降临  

热门小说推荐
仙道猎人

仙道猎人

林风穿越到了一个诡异的世界,成了凌虚观的一名小道士。但这世界原本的规则早已破碎,破碎的仙道流落到各种生物手中,滋生出无数邪仙异教。林风在机缘巧合下,被疯子师父血肉附体,还换上了一颗恶鬼的心脏,变成一个半人半鬼的怪物。红月,血雨,尸林倒挂,白蜡油翻滚中人祭,万人朝拜的黄金树,连绵不断的尸垛,不死癫狂的难民,佛世净土中...

林家有女整治家风

林家有女整治家风

关于林家有女整治家风种田宅斗大女主无金手指无cp脾气暴躁一言不合就咬人村中有四霸恶狗公羊大鹅和林三丫林瑶睁开眼就目睹了家徒四壁,那叫一个寒酸。再睁眼又目睹了泼妇骂街,得不想动嘴打一顿就好了。从此林家三丫性情大变一言不合就开撕。重男轻女的偏心祖母,心思深沉祖父,独木难支的后娘,软弱无能的亲爹。上有两个任人欺辱的姐姐,下有两个后娘生的弟妹,更有恶毒叔伯一窝好吃懒做筛子精,真真是极品凑了一堆。从此...

万里追狼

万里追狼

关于万里追狼白龙,它不是龙,也不是马,它是一条白色的狗,是60年代华北地区某村的一条狗王。在那个狼灾泛滥的时代,白龙在主人福哥的照料下,历经坎坷,从一条小狗崽成长为一条勇猛的狗王,并和村里的狗一起担负起守卫村庄的责任。由此与村庄周围的狼群结仇,几番恶战,斗智斗勇。。。...

诸天带着随身空间到了四合院世界

诸天带着随身空间到了四合院世界

关于诸天带着随身空间到了四合院世界陈琦莫名穿越,来到一片湖心岛,发现拥有空间之后,并感应到世界种子,按其要求吸收物质供给小世界之种,然后就被排斥到四合院世界,开局城门口,因为衣服新颖而被误认为富家公子而被放行,进入城内遇到还在卖包子的未成年何雨柱,阻止了他被人骗,改变了他获得外号的命运,从而改变了主角的命运从其身上获得了气运,得到了一定的庇护避免了被四合院世界排斥而赶出世界。之后陈琦靠着何雨柱的帮助进入了四合院租了院子安定下来,靠着小世界的养殖种植能力,通过何大清介绍给丰泽园供应食材,之后开肉铺,接手杂货铺,开商行,买地,生意越做越大,于是很多事情很多人也纷至沓来,蝴蝶效应直接造成何大清成了丰泽园二厨,并再娶了。而陈琦只想收集这个世界的各种动植物然后去诸天寻找永生。持续的获取气运使得小世界内开始出现了生成中的四合院世界的信标传送门,完成之后就可以在离开这个世界之后就可以随时回到四合院世界。现在开启了荒野大镖客2救赎的第一幕第一个世界,四合院,第1章124章第二世界,荒野西部大镖客2125章第三世界,港综第四个世界待定。...

异能学校之遇上恋爱脑大佬

异能学校之遇上恋爱脑大佬

关于异能学校之遇上恋爱脑大佬选修课总是遇到女主被迫恋爱脑的魔修大佬vs表面小白实则腹黑爱玩的欧皇新生!简介一高考后准备报考的褚星禾,某天突然接到电话请问是褚星禾同学吗?这里是关山岭职业技术专修学院考生你好,这里是玄天宗职业技法大学招生办褚同学你好,这里是魔神机械设计学院招生办这不妥妥的诈骗电话吗?什么妖魔鬼怪的野鸡学校都打电话过来招生。听听这名字,褚星禾能信吗?当然不能!!!然而她还是被迫入学了。没人告诉她还有入学考试,怎么还有人上学带刀枪剑炮水晶球啊?这都算了!为什么入学考试是闯鬼屋?躲丧尸?跳大神越来越离谱了,得亏褚星禾从小见惯妖魔鬼怪,不然真得被创飞。简介二通识实践课就跟着魔修大佬一起选!结课巨快!为什么?他每个副本都得杀妻证道,主打就是一个大道无情!你进去老公还没喊出来,人就噶掉了!嘎嘎快。还有这种好事?褚星禾第一个冲了!然而她遇到的怎么不太一样?谁能来告诉她,为什么这个魔修大佬只会哭唧唧找老婆,甩都甩不开?...

人在木叶:生性纯良的我被系统逼上了邪路

人在木叶:生性纯良的我被系统逼上了邪路

关于人在木叶生性纯良的我被系统逼上了邪路穿越火影世界,开局觉醒系统!呦,生性纯良的宿主呦!作为一个正常的男人,你怎么能眼睁睁的看着宇智波富岳那个混蛋老牛吃嫩草!一向宇智波美琴表白,俘获佳人芳心奖励S级忍术一门(随机)二生性纯良的宿主呦!只有愚蠢的人才会做选择,强夺一血奖励写轮眼三门忍术熟练度提升一级(随即)望着远处自己下属那纯真的神情,藤原哲也看着水中自己的倒影陷入了沉思。这一血,自己究竟是要,还是不要?...

每日热搜小说推荐