手机浏览器扫描二维码访问
第226章拉格朗日乘数法
新的一天,阳光透过学堂的窗户,柔和而温暖地洒在学子们的课桌上,形成一片片斑驳的光影。戴浩文先生精神抖擞地站在讲台前,目光中充满了期待,准备带领大家开启新的数学知识篇章——拉格朗日乘数法。
“同学们,在我们不断探索数学的广袤世界时,今天我们即将涉足一个充满魅力且实用的领域——拉格朗日乘数法。”戴浩文先生的声音沉稳而有力,清晰地传遍了整个学堂。
他转身,拿起粉笔,在黑板上写下一个简单的优化问题:“求函数f(x,y)=x^2+y^2在约束条件g(x,y)=x+y-1=0下的最小值。”
学子们的目光紧紧盯着黑板上的题目,眼神中透露出好奇和思索。他们的大脑开始飞速运转,试图在已有的知识体系中找到与之相关的线索。
戴浩文先生放下粉笔,双手撑在讲台上,开始详细讲解:“首先,我们引入拉格朗日乘数λ,构建拉格朗日函数L(x,y,λ)=x^2+y^2+λ(x+y-1)。同学们,可能你们会好奇,为什么要这样构建呢?”
一位坐在前排的同学迫不及待地举起手提问:“先生,为什么要这样构建呢?”
戴浩文先生微笑着回答:“这是个很好的问题。我们这样构建的目的,是将有约束条件的优化问题转化为无约束条件的问题。通过引入这个拉格朗日乘数λ,我们能够把约束条件融合到新构建的函数中,从而使问题的解决有了新的途径。”
接着,他回过身,用粉笔指着黑板继续说道:“接下来,我们分别对x、y和λ求偏导数,并令其等于零。”
戴浩文先生在黑板上写下详细的偏导数式子:
?L?x=2x+λ=0①
?L?y=2y+λ=0②
?L?λ=x+y-1=0③
“我们来看这三个式子,先从①和②入手,同学们,你们能发现什么?”戴浩文先生用鼓励的眼神看着大家。
一位聪明的学子站起来回答:“先生,从这两个式子可以得出2x=2y,也就是说x=y。”
戴浩文先生满意地点点头:“非常好!那既然x=y,我们将其代入③中,就得到2x-1=0,那么很容易就能解得x=y=12。”
“所以,在这个约束条件下,函数f(x,y)的最小值就是12。大家明白了吗?”戴浩文先生目光扫过每一位学子。
同学们纷纷点头,但眼神中仍有一些疑惑。
戴浩文先生似乎看出了大家的心思,他说道:“不要着急,我们再来看一个更复杂的例子。”
他再次拿起粉笔,在黑板上写下:“求函数f(x,y)=xy在约束条件x^2+y^2=1下的最大值和最小值。”
这一次,同学们的眉头皱得更紧了,显然这个问题的难度增加了不少。
戴浩文先生耐心地引导大家:“同样地,我们构建拉格朗日函数L(x,y,λ)=xy+λ(x^2+y^2-1),然后求偏导数。”
他在黑板上逐步写出求偏导的过程:
?L?x=y+2λx=0④
?L?y=x+2λy=0⑤
?L?λ=x^2+y^2-1=0⑥
“同学们,我们来仔细分析这三个式子。由④和⑤,我们可以尝试消除λ,看看能得到什么新的关系。”
经过一番思考和讨论,学子们在戴浩文先生的引导下,逐渐找到了思路。
“那我们得到了这些关系,再结合⑥式,就能够求解出x和y的值。”戴浩文先生一边说,一边在黑板上进行计算。
经过一番复杂的运算,最终得出了这个问题的解。
此时,有些同学已经开始感到有些吃力,但戴浩文先生鼓励道:“数学的学习就像攀登山峰,过程可能会有些艰难,但当我们到达山顶,看到那美丽的风景时,一切努力都是值得的。”
为了让大家更好地理解和掌握拉格朗日乘数法,戴浩文先生又列举了几个不同类型的例子。
“假设我们有一个生产问题。一个工厂生产两种产品A和B,生产一单位A产品的成本是2元,生产一单位B产品的成本是3元。市场对这两种产品的需求有一定的限制,比如A产品和B产品的总数量不能超过100个。现在要确定生产多少A产品和B产品,才能使总成本最小。我们就可以用拉格朗日乘数法来解决这个问题。”
戴浩文先生详细地分析着问题,将实际问题转化为数学模型。
这章没有结束,请点击下一页继续阅读!
“再比如,在物理学中,考虑一个质点在一个力场中运动。质点的势能函数是f(x,y,z),同时受到一个约束条件,比如质点必须在某个曲面g(x,y,z)=0上运动。我们可以用拉格朗日乘数法来找到质点在这个约束下的稳定位置。”
同学们听得津津有味,不时地在本子上记录着关键的步骤和思路。
戴浩文先生接着说:“拉格朗日乘数法不仅在二维和三维的问题中有应用,在更高维度的空间中同样适用。虽然计算会更加复杂,但原理是相同的。”
我只想做个二道贩子 重生宋徽宗,带领大宋走向巅峰 破产富二代的逆袭人生 无极道祖 凡尘人烟 刚到洪荒的我变成铠甲勇士 小师妹是个惹祸精 四合院,雨水当家傻柱赢麻了 重生:我回到核污水入海的那些年 诸朝陪我刷短视频 闪婚豪门病娇小奶狗,升级打怪 家族修仙从种植开始 我,慈爱勇者,打钱! 铁血抗日之屠杀小鬼子 骗婚女魔尊,奖励上古重瞳 战神霸天传 太古祖墟 被嫌弃直接摆烂,她们开始后悔了 末世魔尊:人在岛国洗劫万物 仙道系统:逆天而行
林风穿越到了一个诡异的世界,成了凌虚观的一名小道士。但这世界原本的规则早已破碎,破碎的仙道流落到各种生物手中,滋生出无数邪仙异教。林风在机缘巧合下,被疯子师父血肉附体,还换上了一颗恶鬼的心脏,变成一个半人半鬼的怪物。红月,血雨,尸林倒挂,白蜡油翻滚中人祭,万人朝拜的黄金树,连绵不断的尸垛,不死癫狂的难民,佛世净土中...
关于异能学校之遇上恋爱脑大佬选修课总是遇到女主被迫恋爱脑的魔修大佬vs表面小白实则腹黑爱玩的欧皇新生!简介一高考后准备报考的褚星禾,某天突然接到电话请问是褚星禾同学吗?这里是关山岭职业技术专修学院考生你好,这里是玄天宗职业技法大学招生办褚同学你好,这里是魔神机械设计学院招生办这不妥妥的诈骗电话吗?什么妖魔鬼怪的野鸡学校都打电话过来招生。听听这名字,褚星禾能信吗?当然不能!!!然而她还是被迫入学了。没人告诉她还有入学考试,怎么还有人上学带刀枪剑炮水晶球啊?这都算了!为什么入学考试是闯鬼屋?躲丧尸?跳大神越来越离谱了,得亏褚星禾从小见惯妖魔鬼怪,不然真得被创飞。简介二通识实践课就跟着魔修大佬一起选!结课巨快!为什么?他每个副本都得杀妻证道,主打就是一个大道无情!你进去老公还没喊出来,人就噶掉了!嘎嘎快。还有这种好事?褚星禾第一个冲了!然而她遇到的怎么不太一样?谁能来告诉她,为什么这个魔修大佬只会哭唧唧找老婆,甩都甩不开?...
关于万里追狼白龙,它不是龙,也不是马,它是一条白色的狗,是60年代华北地区某村的一条狗王。在那个狼灾泛滥的时代,白龙在主人福哥的照料下,历经坎坷,从一条小狗崽成长为一条勇猛的狗王,并和村里的狗一起担负起守卫村庄的责任。由此与村庄周围的狼群结仇,几番恶战,斗智斗勇。。。...
关于足坛之开局点满任意球什么?竟然把任意球点满了,我明明点的是传球呀!!!沦为皇马队饮水机管理员的江浩,在一场国家德比最后时刻登场,以两粒直接任意球破门方式开始传奇人生。弗洛伦蒂诺我这辈子最大的错误,便是把江浩卖给巴伦西亚。齐达内我很幸运,江浩没有出生在我们那个年代。C罗江浩是历史最佳,我不如他。贝尔难以想象,我竟然会在速度上被人碾压。拉莫斯这家伙不是惧怕对抗吗,怎么铲不动?梅西...
关于人在木叶生性纯良的我被系统逼上了邪路穿越火影世界,开局觉醒系统!呦,生性纯良的宿主呦!作为一个正常的男人,你怎么能眼睁睁的看着宇智波富岳那个混蛋老牛吃嫩草!一向宇智波美琴表白,俘获佳人芳心奖励S级忍术一门(随机)二生性纯良的宿主呦!只有愚蠢的人才会做选择,强夺一血奖励写轮眼三门忍术熟练度提升一级(随即)望着远处自己下属那纯真的神情,藤原哲也看着水中自己的倒影陷入了沉思。这一血,自己究竟是要,还是不要?...
关于林家有女整治家风种田宅斗大女主无金手指无cp脾气暴躁一言不合就咬人村中有四霸恶狗公羊大鹅和林三丫林瑶睁开眼就目睹了家徒四壁,那叫一个寒酸。再睁眼又目睹了泼妇骂街,得不想动嘴打一顿就好了。从此林家三丫性情大变一言不合就开撕。重男轻女的偏心祖母,心思深沉祖父,独木难支的后娘,软弱无能的亲爹。上有两个任人欺辱的姐姐,下有两个后娘生的弟妹,更有恶毒叔伯一窝好吃懒做筛子精,真真是极品凑了一堆。从此...