球书小说网

手机浏览器扫描二维码访问

第76章 对火星轨道变化问题的最后解释(第1页)

作者君在作品相关中其实已经解释过这个问题。

不过仍然有人质疑——“你说得太含糊了”,“火星轨道的变化比你想象要大得多!”

那好吧,既然作者君的简单解释不够有力,那咱们就看看严肃的东西,反正这本书写到现在,嚷嚷着本书bug一大堆,用初高中物理在书中挑刺的人也不少。

以下是文章内容:

long-termintegrationsandstabilityofplanetaryorbitsinoursolarsystem

abstract

wepresenttheresultsofverylong-termnumericalintegrationsofplanetaryorbitalmotionsover109-yrtime-spansincludingallnineplanets.aquickinspectionofournumericaldatashowsthattheplanetarymotion,atleastinoursimpledynamicalmodel,seemstobequitestableevenoverthisverylongtime-span.acloserlookatthelowest-frequencyoscillationsusingalow-passfiltershowsusthepotentiallydiffusivecharacterofterrestrialplanetarymotion,especiallythatofmercury.thebehaviouroftheeccentricityofmercuryinourintegrationsisqualitativelysimilartotheresultsfromjacqueslaskar'ssecularperturbationtheory(e.g.emax~0.35over~±4gyr).however,therearenoapparentsecularincreasesofeccentricityorinclinationinanyorbitalelementsoftheplanets,whichmayberevealedbystilllonger-termnumericalintegrations.wehavealsoperformedacoupleoftrialintegrationsincludingmotionsoftheouterfiveplanetsoverthedurationof±5x1010yr.theresultindicatesthatthethreemajorresonancesintheneptune–plutosystemhavebeenmaintainedoverthe1011-yrtime-span.

1introduction

1.1definitionoftheproblem

thequestionofthestabilityofoursolarsystemhasbeendebatedoverseveralhundredyears,sincetheeraofnewton.theproblemhasattractedmanyfamousmathematiciansovertheyearsandhasplayedacentralroleinthedevelopmentofnon-lineardynamicsandchaostheory.however,wedonotyethaveadefiniteanswertothequestionofwhetheroursolarsystemisstableornot.thisispartlyaresultofthefactthatthedefinitionoftheterm‘stability’isvaguewhenitisusedinrelationtotheproblemofplanetarymotioninthesolarsysteactuallyitisnoteasytogiveaclear,rigorousandphysicallymeaningfuldefinitionofthestabilityofoursolarsyste

amongmanydefinitionsofstability,hereweadoptthehilldefinition(gladman1993):actuallythisisnotadefinitionofstability,butofinstability.wedefineasystemasbecomingunstablewhenacloseencounteroccurssomewhereinthesystem,startingfromacertaininitialconfiguration(chambers,wetherillitotanikawa1999).asystemisdefinedasexperiencingacloseencounterwhentwobodiesapproachoneanotherwithinanareaofthelargerhillradius.otherwisethesystemisdefinedasbeingstable.henceforwardwestatethatourplanetarysystemisdynamicallystableifnocloseencounterhappensduringtheageofoursolarsystem,about±5gyr.incidentally,thisdefinitionmaybereplacedbyoneinwhichanoccurrenceofanyorbitalcrossingbetweeneitherofapairofplanetstakesplace.thisisbecauseweknowfromexperiencethatanorbitalcrossingisverylikelytoleadtoacloseencounterinplanetaryandprotoplanetarysystems(yoshinaga,kokubomakino1999).ofcoursethisstatementcannotbesimplyappliedtosystemswithstableorbitalresonancessuchastheneptune–plutosyste

1.2previousstudiesandaimsofthisresearch

inadditiontothevaguenessoftheconceptofstability,theplanetsinoursolarsystemshowacharactertypicalofdynamicalchaos(sussmanwisdom1988,1992).thecauseofthischaoticbehaviourisnowpartlyunderstoodasbeingaresultofresonanceoverlapping(murraylecar,franklinholman2001).however,itwouldrequireintegratingoveranensembleofplanetarysystemsincludingallnineplanetsforaperiodcoveringseveral10gyrtothoroughlyunderstandthelong-termevolutionofplanetaryorbits,sincechaoticdynamicalsystemsarecharacterizedbytheirstrongdependenceoninitialconditions.

fromthatpointofview,manyofthepreviouslong-termnumericalintegrationsincludedonlytheouterfiveplanets(sussmankinoshitanakai1996).thisisbecausetheorbitalperiodsoftheouterplanetsaresomuchlongerthanthoseoftheinnerfourplanetsthatitismucheasiertofollowthesystemforagivenintegrationperiod.atpresent,thelongestnumericalintegrationspublishedinjournalsarethoseofduncanlissauer(1998).althoughtheirmaintargetwastheeffectofpost-main-sequencesolarmasslossonthestabilityofplanetaryorbits,theyperformedmanyintegrationscoveringupto~1011yroftheorbitalmotionsofthefourjovianplanets.theinitialorbitalelementsandmassesofplanetsarethesameasthoseofoursolarsysteminduncanlissauer'spaper,buttheydecreasethemassofthesungraduallyintheirnumericalexperiments.thisisbecausetheyconsidertheeffectofpost-main-sequencesolarmasslossinthepaper.consequently,theyfoundthatthecrossingtime-scaleofplanetaryorbits,whichcanbeatypicalindicatoroftheinstabilitytime-scale,isquitesensitivetotherateofmassdecreaseofthesun.whenthemassofthesunisclosetoitspresentvalue,thejovianplanetsremainstableover1010yr,orperhapslonger.duncanlissaueralsoperformedfoursimilarexperimentsontheorbitalmotionofsevenplanets(venustoneptune),whichcoveraspanof~109yr.theirexperimentsonthesevenplanetsarenotyetcomprehensive,butitseemsthattheterrestrialplanetsalsoremainstableduringtheintegrationperiod,maintainingalmostregularoscillations.

ontheotherhand,inhisaccuratesemi-analyticalsecularperturbationtheory(laskar1988),laskarfindsthatlargeandirregularvariationscanappearintheeccentricitiesandinclinationsoftheterrestrialplanets,especiallyofmercuryandmarsonatime-scaleofseveral109yr(laskar1996).theresultsoflaskar'ssecularperturbationtheoryshouldbeconfirmedandinvestigatedbyfullynumericalintegrations.

inthispaperwepresentpreliminaryresultsofsixlong-termnumericalintegrationsonallnineplanetaryorbits,coveringaspanofseveral109yr,andoftwootherintegrationscoveringaspanof±5x1010yr.thetotalelapsedtimeforallintegrationsismorethan5yr,usingseveraldedicatedpcsandworkstations.oneofthefundamentalconclusionsofourlong-termintegrationsisthatsolarsystemplanetarymotionseemstobestableintermsofthehillstabilitymentionedabove,atleastoveratime-spanof±4gyr.actually,inournumericalintegrationsthesystemwasfarmorestablethanwhatisdefinedbythehillstabilitycriterion:notonlydidnocloseencounterhappenduringtheintegrationperiod,butalsoalltheplanetaryorbitalelementshavebeenconfinedinanarrowregionbothintimeandfrequencydomain,thoughplanetarymotionsarestochastic.sincethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-termnumericalintegrations,weshowtypicalexamplefiguresasevidenceoftheverylong-termstabilityofsolarsystemplanetarymotion.forreaderswhohavemorespecificanddeeperinterestsinournumericalresults,wehavepreparedawebpage(access),whereweshowraworbitalelements,theirlow-passfilteredresults,variationofdelaunayelementsandangularmomentumdeficit,andresultsofoursimpletime–frequencyanalysisonallofourintegrations.

insection2webrieflyexplainourdynamicalmodel,numericalmethodandinitialconditionsusedinourintegrations.section3isdevotedtoadescriptionofthequickresultsofthenumericalintegrations.verylong-termstabilityofsolarsystemplanetarymotionisapparentbothinplanetarypositionsandorbitalelements.aroughestimationofnumericalerrorsisalsogiven.section4goesontoadiscussionofthelongest-termvariationofplanetaryorbitsusingalow-passfilterandincludesadiscussionofangularmomentumdeficit.insection5,wepresentasetofnumericalintegrationsfortheouterfiveplanetsthatspans±5x1010yr.insection6wealsodiscussthelong-termstabilityoftheplanetarymotionanditspossiblecause.

2descriptionofthenumericalintegrations

(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)

2.3numericalmethod

weutilizeasecond-orderwisdom–holmansymplecticmapasourmainintegrationmethod(wisdomkinoshita,yoshidanakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(sahatremaine1992,1994).

thestepsizeforthenumericalintegrationsis8dthroughoutallintegrationsofthenineplanets(n±1,2,3),whichisabout111oftheorbitalperiodoftheinnermostplanet(mercury).asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericalintegrationofallnineplanetsinsussmanwisdom(1988,7.2d)andsahatremaine(1994,22532d).weroundedthedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inordertoreducetheaccumulationofround-offerrorinthecomputationprocesses.inrelationtothis,wisdomholman(1991)performednumericalintegrationsoftheouterfiveplanetaryorbitsusingthesymplecticmapwithastepsizeof400d,110.83oftheorbitalperiodofjupiter.theirresultseemstobeaccurateenough,whichpartlyjustifiesourmethodofdeterminingthestepsize.however,sincetheeccentricityofjupiter(~0.05)ismuchsmallerthanthatofmercury(~0.2),weneedsomecarewhenwecomparetheseintegrationssimplyintermsofstepsizes.

intheintegrationoftheouterfiveplanets(f±),wefixedthestepsizeat400d.

weadoptgauss'fandgfunctionsinthesymplecticmaptogetherwiththethird-orderhalleymethod(danby1992)asasolverforkeplerequations.thenumberofmaximumiterationswesetinhalley'smethodis15,buttheyneverreachedthemaximuminanyofourintegrations.

theintervalofthedataoutputis200000d(~547yr)forthecalculationsofallnineplanets(n±1,2,3),andabout8000000d(~21903yr)fortheintegrationoftheouterfiveplanets(f±).

althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,weappliedalow-passfiltertotheraworbitaldataafterwehadcompletedallthecalculations.seesection4.1formoredetail.

2.4errorestimation

2.4.1relativeerrorsintotalenergyandangularmomentum

accordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangularmomentum),ourlong-termnumericalintegrationsseemtohavebeenperformedwithverysmallerrors.theaveragedrelativeerrorsoftotalenergy(~10?9)andoftotalangularmomentum(~10?11)haveremainednearlyconstantthroughouttheintegrationperiod(fig.1).thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintotalenergybyaboutoneorderofmagnitudeormore.

relativenumericalerrorofthetotalangularmomentumδaa0andthetotalenergyδee0inournumericalintegrationsn±1,2,3,whereδeandδaaretheabsolutechangeofthetotalenergyandtotalangularmomentum,respectively,ande0anda0aretheirinitialvalues.thehorizontalunitisgyr.

notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-offerrorhandlingandnumericalalgorithms.intheupperpaneloffig.1,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-eprecision.

2.4.2errorinplanetarylongitudes

sincethesymplecticmapspreservetotalenergyandtotalangularmomentumofn-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaccuracyofnumericalintegrations,especiallyasameasureofthepositionalerrorofplanets,i.e.theerrorinplanetarylongitudes.toestimatethenumericalerrorintheplanetarylongitudes,weperformedthefollowingprocedures.wecomparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmuchshorterperiodsbutwithmuchhigheraccuracythanthemainintegrations.forthispurpose,weperformedamuchmoreaccurateintegrationwithastepsizeof0.125d(164ofthemainintegrations)spanning3x105yr,startingwiththesameinitialconditionsasinthen?1integration.weconsiderthatthistestintegrationprovidesuswitha‘pseudo-true’solutionofplanetaryorbitalevolution.next,wecomparethetestintegrationwiththemainintegration,n?1.fortheperiodof3x105yr,weseeadifferenceinmeananomaliesoftheearthbetweenthetwointegrationsof~0.52°(inthecaseofthen?1integration).thisdifferencecanbeextrapolatedtothevalue~8700°,about25rotationsofearthafter5gyr,sincetheerroroflongitudesincreaseslinearlywithtimeinthesymplecticmap.similarly,thelongitudeerrorofplutocanbeestimatedas~12°.thisvalueforplutoismuchbetterthantheresultinkinoshitanakai(1996)wherethedifferenceisestimatedas~60°.

3numericalresults–i.glanceattherawdata

inthissectionwebrieflyreviewthelong-termstabilityofplanetaryorbitalmotionthroughsomesnapshotsofrawnumericaldata.theorbitalmotionofplanetsindicateslong-termstabilityinallofournumericalintegrations:noorbitalcrossingsnorcloseencountersbetweenanypairofplanetstookplace.

3.1generaldescriptionofthestabilityofplanetaryorbits

first,webrieflylookatthegeneralcharacterofthelong-termstabilityofplanetaryorbits.ourinterestherefocusesparticularlyontheinnerfourterrestrialplanetsforwhichtheorbitaltime-scalesaremuchshorterthanthoseoftheouterfiveplanets.aswecanseeclearlyfromtheplanarorbitalconfigurationsshowninfigs2and3,orbitalpositionsoftheterrestrialplanetsdifferlittlebetweentheinitialandfinalpartofeachnumericalintegration,whichspansseveralgyr.thesolidlinesdenotingthepresentorbitsoftheplanetsliealmostwithintheswarmofdotseveninthefinalpartofintegrations(b)and(d).thisindicatesthatthroughouttheentireintegrationperiodthealmostregularvariationsofplanetaryorbitalmotionremainnearlythesameastheyareatpresent.

verticalviewofthefourinnerplanetaryorbits(fromthez-axisdirection)attheinitialandfinalpartsoftheintegrationsn±1.theaxesunitsareau.thexy-planeissettotheinvariantplaneofsolarsystemtotalangularmomentu(a)theinitialpartofn+1(t=0to0.0547x109yr).(b)thefinalpartofn+1(t=4.9339x108to4.9886x109yr).(c)theinitialpartofn?1(t=0to?0.0547x109yr).(d)thefinalpartofn?1(t=?3.9180x109to?3.9727x109yr).ineachpanel,atotalof23684pointsareplottedwithanintervalofabout2190yrover5.47x107yr.solidlinesineachpaneldenotethepresentorbitsofthefourterrestrialplanets(takenfromde245).

自杀公主【短篇】  陛下别低头啊GL  【快穿】请不要随处发情(女攻)  大神的技能就是开小号虐菜  山野小神医  木棉  茹芳菲盡  重生之烂泥(h)  太初神尊  薄荷盐  说愿意  皇位与忠犬(重生)  悍妇1949  真流氓和小妖精(,带调教)  泰坦无人声  穿成作精后我凭厨艺爆红出圈  [历史]大秦之苍雪龙城  荧荧 强推完结+番外  重生之宠你一辈子  捡到一只小狼狗  

热门小说推荐
人在木叶:生性纯良的我被系统逼上了邪路

人在木叶:生性纯良的我被系统逼上了邪路

关于人在木叶生性纯良的我被系统逼上了邪路穿越火影世界,开局觉醒系统!呦,生性纯良的宿主呦!作为一个正常的男人,你怎么能眼睁睁的看着宇智波富岳那个混蛋老牛吃嫩草!一向宇智波美琴表白,俘获佳人芳心奖励S级忍术一门(随机)二生性纯良的宿主呦!只有愚蠢的人才会做选择,强夺一血奖励写轮眼三门忍术熟练度提升一级(随即)望着远处自己下属那纯真的神情,藤原哲也看着水中自己的倒影陷入了沉思。这一血,自己究竟是要,还是不要?...

林家有女整治家风

林家有女整治家风

关于林家有女整治家风种田宅斗大女主无金手指无cp脾气暴躁一言不合就咬人村中有四霸恶狗公羊大鹅和林三丫林瑶睁开眼就目睹了家徒四壁,那叫一个寒酸。再睁眼又目睹了泼妇骂街,得不想动嘴打一顿就好了。从此林家三丫性情大变一言不合就开撕。重男轻女的偏心祖母,心思深沉祖父,独木难支的后娘,软弱无能的亲爹。上有两个任人欺辱的姐姐,下有两个后娘生的弟妹,更有恶毒叔伯一窝好吃懒做筛子精,真真是极品凑了一堆。从此...

诸天带着随身空间到了四合院世界

诸天带着随身空间到了四合院世界

关于诸天带着随身空间到了四合院世界陈琦莫名穿越,来到一片湖心岛,发现拥有空间之后,并感应到世界种子,按其要求吸收物质供给小世界之种,然后就被排斥到四合院世界,开局城门口,因为衣服新颖而被误认为富家公子而被放行,进入城内遇到还在卖包子的未成年何雨柱,阻止了他被人骗,改变了他获得外号的命运,从而改变了主角的命运从其身上获得了气运,得到了一定的庇护避免了被四合院世界排斥而赶出世界。之后陈琦靠着何雨柱的帮助进入了四合院租了院子安定下来,靠着小世界的养殖种植能力,通过何大清介绍给丰泽园供应食材,之后开肉铺,接手杂货铺,开商行,买地,生意越做越大,于是很多事情很多人也纷至沓来,蝴蝶效应直接造成何大清成了丰泽园二厨,并再娶了。而陈琦只想收集这个世界的各种动植物然后去诸天寻找永生。持续的获取气运使得小世界内开始出现了生成中的四合院世界的信标传送门,完成之后就可以在离开这个世界之后就可以随时回到四合院世界。现在开启了荒野大镖客2救赎的第一幕第一个世界,四合院,第1章124章第二世界,荒野西部大镖客2125章第三世界,港综第四个世界待定。...

异能学校之遇上恋爱脑大佬

异能学校之遇上恋爱脑大佬

关于异能学校之遇上恋爱脑大佬选修课总是遇到女主被迫恋爱脑的魔修大佬vs表面小白实则腹黑爱玩的欧皇新生!简介一高考后准备报考的褚星禾,某天突然接到电话请问是褚星禾同学吗?这里是关山岭职业技术专修学院考生你好,这里是玄天宗职业技法大学招生办褚同学你好,这里是魔神机械设计学院招生办这不妥妥的诈骗电话吗?什么妖魔鬼怪的野鸡学校都打电话过来招生。听听这名字,褚星禾能信吗?当然不能!!!然而她还是被迫入学了。没人告诉她还有入学考试,怎么还有人上学带刀枪剑炮水晶球啊?这都算了!为什么入学考试是闯鬼屋?躲丧尸?跳大神越来越离谱了,得亏褚星禾从小见惯妖魔鬼怪,不然真得被创飞。简介二通识实践课就跟着魔修大佬一起选!结课巨快!为什么?他每个副本都得杀妻证道,主打就是一个大道无情!你进去老公还没喊出来,人就噶掉了!嘎嘎快。还有这种好事?褚星禾第一个冲了!然而她遇到的怎么不太一样?谁能来告诉她,为什么这个魔修大佬只会哭唧唧找老婆,甩都甩不开?...

仙道猎人

仙道猎人

林风穿越到了一个诡异的世界,成了凌虚观的一名小道士。但这世界原本的规则早已破碎,破碎的仙道流落到各种生物手中,滋生出无数邪仙异教。林风在机缘巧合下,被疯子师父血肉附体,还换上了一颗恶鬼的心脏,变成一个半人半鬼的怪物。红月,血雨,尸林倒挂,白蜡油翻滚中人祭,万人朝拜的黄金树,连绵不断的尸垛,不死癫狂的难民,佛世净土中...

万里追狼

万里追狼

关于万里追狼白龙,它不是龙,也不是马,它是一条白色的狗,是60年代华北地区某村的一条狗王。在那个狼灾泛滥的时代,白龙在主人福哥的照料下,历经坎坷,从一条小狗崽成长为一条勇猛的狗王,并和村里的狗一起担负起守卫村庄的责任。由此与村庄周围的狼群结仇,几番恶战,斗智斗勇。。。...

每日热搜小说推荐